
Lee Calcote, Layer5
Ken Owens, Fiserv

Intro and Deep Dive

CNCF TAG Network &
CNCF Service Mesh WG

CNCF TAG Network Chairs

Ken Owens
Fiserv

@kenowens12

Lee Calcote
Layer5

@lcalcote

Ed Warnicke
Cisco

@edwarnicke

CNCF TAG Network
Introduction

With an ever steady eye to the needs of workloads and developers who
create them and operators who run them, TAG Network’s mission is to
enable widespread and successful development, deployment and
operation of resilient and intelligent network systems in cloud native
environments.

In this endeavor, we seek to:

1. Clarify and inform.
2. Collaborate and interrelate.
3. Assist and attract projects.
4. Afford impartial stewardship.

Mission Statement

KubeCon NA 2019
• CNI
• CoreDNS
• Envoy
• gRPC
• Linkerd
• NATS
• Network Service Mesh

KubeCon EU 2020
• BFE
• CNI-Genie
• Contour
• Kuma
• Service Mesh Interface

As of KubeCon NA 2020
• Chaos Mesh
• Open Service Mesh

As of KubeCon EU 2021
• Emissary Ingress
• k8gb

KubeCon NA 2021
• Service Mesh Performance
• Submariner
• Cilium
• Meshery

KubeCon China 2021
• Proposed: FabEdge

CNCF TAG Network Projects

● Analyzing Service Mesh Performance

Working Groups
• Universal Data Plane API

• Service Mesh Working
Group

Whitepapers
● Cloud Native Networking Principles

proposed for incorporation into TAG
Network.

● Service Mesh Patterns and Reference
Implementation

Working Groups and Papers

Future:
● Techniques of Adaptive Service Mesh

Optimization

https://www.nxtbook.com/nxtbooks/ieee/bridge_issue3_2021/index.php#/p/16
https://github.com/cncf/udpa
https://docs.google.com/presentation/d/1mDE9K8OJ3lyl4GN98Ja3c9ATGWS4rByRtCPIKcoc7LY/edit#slide=id.g77e93b29e5_1_0
https://docs.google.com/presentation/d/1mDE9K8OJ3lyl4GN98Ja3c9ATGWS4rByRtCPIKcoc7LY/edit#slide=id.g77e93b29e5_1_0
http://cloud-native-principles.org

Service Mesh Working Group
Deep-Dive

Service Mesh Specifications
It’s a multi-mesh world

A standard
interface for service

meshes on
Kubernetes.

A set of API
standards for

enabling service
mesh federation.

A standard for
describing and

capturing service
mesh performance.

Service Mesh
Interface (SMI)

Service Mesh
Performance (SMP)

Multi-Vendor Service
Mesh Interoperation

(Hamlet)

to be determined

Cross-Project Initiatives
Collaborating across projects to achieve common goals

meshery.io/smi+ =
Service Mesh Interface Conformance

smp-spec.io

Service Mesh Performance

meshery.io/service-mesh-patterns

Service Mesh Patterns

+ = 60 Patterns

+ = 5,000 Tests

50 Tests

https://meshery.io/smi
https://smp-spec.io
https://meshery.io/service-mesh-patterns

Service Mesh Patterns enable the business function in simple
language.

● Patterns capture service mesh behavior in a single file and an end-user
centric way.

Service Mesh Patterns are service mesh agnostic.
● But, still allow users access service mesh-specific features and differentiation.

○ User ability to filter on service mesh compatibility..

Service Mesh Patterns are reusable.
● Not only are patterns idempotent, but you can easily copy a pattern and

modify to suit.
● Imbued with best practices.
● Pattern components can be interchanged and used as building blocks,

combining multiple components into a new, integrated pattern.

github.com/service-mesh-patterns

Service Mesh Patterns
Enabling use of repeatable architectural patterns

https://github.com/service-mesh-patterns

Authors: Lee Calcote, Nic Jackson CNCF Service Mesh WG
Area I: It's a Mesh Out There Category
A world of multiple service meshes Foundational
Pattern: How a service mesh empowers an Operator: Retry Budgets Foundational
Pattern: How a service mesh empowers a Service Owner Foundational
Pattern: How a service mesh empowers a Developer Foundational
Pattern: Employing planes of a service mesh Foundational

Area II: Patterns of Initialization and Deployment
Pattern: How to get started with any service mesh; Local Deployment Deployment
Pattern: Sidecar Proxies Deployment
Pattern: Node Agents Deployment
Pattern: Proxyless Service Mesh Deployment
Pattern: Passive and Active Health Checking Deployment
Pattern: Workload Onboarding and Service Mesh Adoption Workloads
Pattern: Expanding the Mesh to Brownfield Environments Workloads
Pattern: Segmenting the Monolith (Strangler) Workloads

Area III: Patterns of Configuration
Pattern: Data plane extensibility Observability
Pattern: Transparently Proxying TLS Traffic Management
Pattern: Foundational Traffic Routing Traffic Management
Pattern: Local and Global Rate Limiting Traffic Management
Pattern: Timeouts Traffic Management
Pattern: Retries Traffic Management
Pattern: Circuit Breaking Traffic Management
Pattern: Bulkheading with Resiliency Resiliency
Pattern: Canary Deployments Traffic Management
Pattern: Ingress Traffic Management
Pattern: Advanced Traffic Routing Traffic Management
Pattern: Protocol Aware Meshing Traffic Management
Pattern: Load balancing Algs Traffic Management
Pattern: Incorporating Business Logic in your data plane (WASM) Traffic Management
Pattern: Chaos Engineering with a Service Mesh Resiliency
Pattern: Service Meshing at the Edge Traffic Management
Area IV: Patterns of Operation
Pattern: Visualizing services Observability
Pattern: Using Envoy metrics Observability
Pattern: Using Request Logs Observability
Pattern: Using Traces Observability
Pattern: Managing configuration change Troubleshooting
Pattern: Advanced Data Plane Extensbility and Intelligence Troubleshooting
Pattern: Cloud bursting Scaling
Pattern: Multi-cluster failover Scaling
Pattern: Federation Scaling
Pattern: Egress Gateways Security
Pattern: Zero Trust: Securing in-cluster communication (mTLS) -
Encryption Security
Pattern: Applying Connection-level Authorization Security
Pattern: Applying Request-level Authorization Security
Area IV: Performance, Testing, and Debugging, Tuning,
Troubleshooting
Pattern: Debugging the Control Plane Troubleshooting
Pattern: Debugging the Data Plane Troubleshooting
Pattern: Methodologies of Performance Tuning and Testing Tuning / Performance
Pattern: Managing the Performance of the Service Mesh Tuning / Performance
Pattern: Managing the Performance of the Workloads Tuning / Performance
Pattern: Using the Service Mesh for Functional Testing Validating
Pattern: How to use the Service Mesh as a Debugger Debugging
Pattern: TAPing into your requests Debugging
Area V: Patterns in Practice: Employing Standards
Pattern: The need for abstracting the service mesh Service Mesh Interface (SMI)

Pattern: Baselining your workload performance
Service Mesh Performance
(SMP)

Pattern: Gauging the value of your service mesh deployment
Service Mesh Performance
(SMP)

Pattern: Federating Service Catalogs
Multi-Vendor Service Mesh
Interoperation (Hamlet)

Pattern: Common interface for integrating with service mesh
functionality Service Mesh Interface (SMI)

Circuit Breaker

TRAFFIC MGMT

SMP014

Service Mesh Pattern Catalog
Enabling use of repeatable architectural patterns

meshery.io/service-mesh-patterns

https://twitter.com/lcalcote
https://twitter.com/sheriffjackson
https://docs.google.com/presentation/d/1mDE9K8OJ3lyl4GN98Ja3c9ATGWS4rByRtCPIKcoc7LY/edit#
https://meshery.io/service-mesh-patterns

meshery.io/smi

Purpose and Scope
• Provide an easy-to-use, service mesh and SMI-specific tool to give

service mesh projects and users a suite of repeatable conformance
tests.

• All service mesh projects participating in the Service Mesh Interface
specification.

Project Goals
• Provide users with a compatibility matrix identifying the SMI features

that are supported per service mesh.

Project Objectives
• Define a set of conformance tests and what behavior is expected of a

conforming service mesh implementation.
• Built into each participating service mesh project’s release tooling.

Validating Conformance
• Conformance to SMI specifications will be done through use of a

service mesh’s workload.
• A sample application is used as the workload to test: Learn Layer5

Service Mesh Interface Conformance
Validating compliance

+ =

Reference: Design spec and Overview

https://meshery.io/smi
https://github.com/layer5io/learn-layer5
https://docs.google.com/document/d/1HL8Sk7NSLLj-9PRqoHYVIGyU6fZxUQFotrxbmfFtjwc/edit?usp=sharing
http://layer5.io/smi

Directly enables:
- capturing details of infrastructure capacity, service mesh

configuration, and workload metadata.

Facilitates:
- benchmarking of service mesh performance

- exchange of performance information from system-to-system
/ mesh-to-mesh

- apples-to-apples performance comparisons of service mesh
deployments.

- a universal performance index to gauge a service mesh’s
efficiency against deployments in other organizations’
environments.

Service Mesh Performance
vendor neutral service mesh performance measurement standard

smp-spec.io

https://smp-spec.io

MeshMark:
• Distills a variety of overhead signals and key performance

indicators into a simple scale. Reducing measurement data to a
single well understood metric is a convenient way to track and
report on quality of experience.

• Its purpose is to convert measurements into insights about the
value of functions a service mesh is providing.

• It does so by specifying a uniform way to analyze and report on
the degree to which measured performance provides user value.

MeshMark
from Service Mesh Performance

An open standard for
measuring performance of

service meshes in context of
the value they provide.

Problem:
• Measurement data may not provide a clear and simple picture of

how well those applications are performing from a business point
of view, a characteristic desired in metrics that are used as key
performance indicators.

• Reporting several different kinds of data can cause confusion.

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Software_applications

getnighthawk.dev

Reference: Design Spec, Issue #72

Problem:
• Many performance characterizing tools are limited to single instance load generator. This limits

the amount of traffic and the variety of behavioral analysis.

• Distributed load testing in parallel poses a challenge when merging results without losing the
precision we need to gain insight into the high tail percentiles.

• How to model your service mesh topology and optimize for your ideal configuration in context
of how much you value properties of resiliency, performance, throughput, latency, and so on
before you deploy to production.

• the service mesh management plane

• supports wrk2, fortio, and Nighthawk as
single instance load generators.

• a Layer 7 performance characterization tool
created by Envoy project.

• a load generator custom-built for data plane
proxy testing.

Distributed Performance Analysis
Distributed systems require distributed analysis

Distributed load testing offers insight into system behaviors that arguably
more accurately represent real world behaviors of services under load
as that load comes from any number of sources.

Explore how Nighthawk adaptive load controllers in the service mesh
management plane, Meshery, offer ongoing insight and optimization.

Nighthawk Meshery +

=

https://getnighthawk.dev
https://docs.google.com/document/d/1_hhQ5w1iLClgf7RvboI6il-eMKKAVPwz50GHm2VN4Bg/edit?usp=sharing
https://github.com/envoyproxy/envoy-perf/issues/72

CALL FOR PARTICIPATION

ENGAGE

• Meet on 1st and 3rd Thursday of every month at 11am Pacific.
• Read: meeting minutes.
• Connect: Slack Channel (#tag-network).
• Join: TAG Network and Service Mesh WG mailing lists at lists.cncf.io

https://zoom.us/my/cncfsignetwork
https://docs.google.com/document/d/18hYemFKK_PC_KbT_TDBUgb0rknOuIhikkRxer4_bv4Q/edit#
https://app.slack.com/client/T08PSQ7BQ/CMG237Z5Z
mailto:sig-network@lists.cncf.io
mailto:cncf-sig-network-servicemesh-wg@lists.cncf.io
https://lists.cncf.io

